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Abstract

Mode splitting in two coupled fiber-ring resonators is observed. We observe a cancellation of on-resonance absorption, which can be
interpreted as resulting from the destructive interference of the symmetric and anti-symmetric modes of the system, in analogy with elec-
tromagnetically-induced transparency in atoms. The response of the system is characterized according to the degeneracy and distinguish-
ability of the normal modes. Finite-difference time-domain simulations agree with an analysis of the transient response of the intra-cavity
fields, and reveal coherent oscillations of the photons between the resonators, i.e., under-damped Rabi oscillations, which we predict to
occur for distinguishable mode splittings.
� 2006 Elsevier B.V. All rights reserved.
Just as the dipolar response of electrons in an atom can
be modeled by a single mechanical or electrical oscillator
[1], quantum coherence effects in atoms can also be mod-
eled effectively by classical systems of coupled oscillators
[2–4]. Not surprisingly then, structures composed of two
coupled optical resonators have been predicted to display
photonic coherence effects such as coupled-resonator-
induced absorption (CRIA) and transparency (CRIT)
[5,6] in direct analogy with electromagnetically-induced
absorption [7] and transparency [8,9] in driven three-level
atomic systems. These phenomena were later observed in
the whispering-gallery modes of coupled fused-silica micro-
spheres [10], which can possess intrinsic quality-factors
exceeding 108. Coherently coupled optical resonators are
therefore promising for applications such as optical delay
lines [11,12], buffers [13,14], gyroscopy [15–18], optical
computing schemes [5], and the modeling of quantum-
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mechanical effects in atoms [19–21]. In this paper we exper-
imentally demonstrate coupled-resonator-induced trans-
parency (CRIT) in coupled fiber ring resonators. These
systems have the advantage that the coupling between res-
onators is significantly easier to control than that between
micro-resonators, and that the resonators are easily assem-
bled from commercial off-the-shelf components.

The steady-state response of two coupled-resonators,
one of which is coupled to an excitation waveguide as
shown in Fig. 1, can be readily solved by iterative or matrix
techniques [22–24]. We consider incident light whose pulse
lengths are longer than the transient response of the struc-
ture (the input is quasi-monochromatic). The complex elec-
tric-field transmission (Eout/Ein) across such a structure is
given by the Airy expression
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Ein

¼ r2 �
t2
2

r2

X1
n¼1

r2a2s1 /1ð Þei/2
� �n

¼ r2 � a2s1 /1ð Þei/2

1� r2a2s1 /1ð Þei/2
¼ s2j j exp i/ effð Þ

2

h i
; ð1Þ

mailto:david.d.smith@nasa.gov


Fig. 1. Electric field designations for two coupled ring resonators.
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where
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is the complex transmittivity through the first resonator,
/j ¼ 2pnjLj=k0 ¼ xjs

ðRTÞ
j are the single-pass phase-shifts,

rj and tj are the coupler reflection and transmission coeffi-
cients, respectively, aj = exp(�ajLj/2) are the single-pass
attenuation coefficients, nj are the refractive indices, aj are
the loss coefficients, Lj are the circumferences of the resona-
tors, the electric fields E�2 (just before) and Eþ2 (just after)
the coupler are shown in Fig. 1, and j = 1, 2 specifies the
first (furthest from the excitation waveguide) or second
(closest to the waveguide) resonator. Note that the angular
resonance frequencies xj are related to the single pass
phase shifts according to /j ¼ xjs

ðRTÞ
j , where sðRTÞ

j are the
round-trip times of the resonators. Hence /j is indicative
of the detuning of the input frequency from the resonance
frequency. The effective transmitted instantaneous phase
shift /(eff) and its derivative d/(eff)/d/ are analogous to
the single-atom phase and group refractive indices, respec-
tively. When the resonators have identical optical path
lengths (they are co-resonant), we can drop the subscript
from the single-pass phase shifts. Note that Eq. (1) can also
be written as s2 ¼ exp½i~/ðeffÞ

2 �, where ~/ðeffÞ
2 ¼ /ðeffÞ

2 � i ln js2j
is the complex effective phase shift and is analogous to
the single-atom complex refractive index. This single vari-

able ~/ðeffÞ
2 thus contains all the information necessary for

determining the response of the coupled-resonator
structure.

For the case of a single resonator, Eq. (2) displays a min-

imum at resonance ð/1 mod 2p ¼ 0Þ, and critical coupling
(T1 = 0) occurs at /1 = 0 when r1 = a1. In contrast, con-
sider the case of two coupled resonators, having identical
OPLs such that /1 = /2 = / (analogous to a degenerate
atomic K system). Now, if the first resonator is overcoupled
(r1 < a1) then /ðeffÞ

1 ¼ p (the resonators interfere destruc-
tively) such that Eq. (1) becomes s2(0) = (r2 + a2|s1|)/
(1 + r2a2|s1|), which displays a maximum at the single-ring
resonances ð/mod2p ¼ 0Þ. As a result, the spectrum is
split into symmetric and antisymmetric normal modes,
characteristic of induced transparency. The approximate
frequencies of the split modes upon transmission /sp can
be found by noting that Ims2 = 0 at / = /sp, provided
the change in Res2 is small at this same frequency:

/sp ¼ q2p� cos�1 r1 1þ 1� a1ð Þ2

2a1

" # !
. ð3Þ

Thus, the transmittance at the split modes is given by

T 2 /sp

� �
¼ r2 � a2a1

1� r2a2a1

����
����
2

ð4Þ

and critical coupling (for the structure as a whole) occurs at
/ = /sp when r2 = a1a2. At critical coupling, the transmit-
tance T2 at / = /sp becomes zero. For completeness, we
note that induced transparency can also occur when the first
resonator is under-coupled (r1 > a1) such that /ðeffÞ

1 ¼ 0 (the
resonators interfere constructively), but in this case the dip
in absorption is considerably less dramatic.

The intracavity electric fields are determined in a fashion
similar to the transmittivities [23], by a summation of the
contributions from the multiplicity of round trips. We
make a subtle, yet important, distinction between what
we refer to as cavity buildup and magnification factors.
The buildup factor is the ratio of the internal field in a par-
ticular resonator to the input to that same resonator,
whereas the magnification factor is ratio of the internal
field to the input to the entire structure. The electric-field
buildup factors are given by

b1 /1ð Þ �
E1

E�2
¼ it1a1ei/1
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n¼0
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where the internal fields E1 and E2 are shown in Fig. 1. The
intensity buildup factors are then given by Bj = |bj|

2. The
electric-field magnification factors are related to the build-
up factors by the relations

l2 /1;/2ð Þ � E2

Ein

¼ b2 /1;/2ð Þ ð7Þ

and
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l1 /1;/2ð Þ � E1

Ein

¼ b2 /1;/2ð Þb1 /1ð Þ
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where a22 and /22 represent the attenuation and phase shift
during the clockwise propagation from the first coupler
back to the second, respectively. The relationship between
the magnification factors is then clearly

l1 /1;/2ð Þ
l2 /1;/2ð Þ ¼

l1 /1;/2ð Þ
l2 /1;/2ð Þ

����
����e�iD/ effð Þ
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such that the effective phase difference between the intra-
cavity fields is

D/ effð Þ � Arg
l1 /1;/2ð Þ
l2 /1;/2ð Þ

� �

¼ /1 � /22 þ
p
2

h i
�Arg½r1 � a1ei/1 �. ð10Þ

The effective phase difference vs. the single-pass phase-shift
is plotted in Fig. 2. The intra-cavity fields are in phase for
the symmetric lower-energy mode, whereas they are out-
of-phase for the anti-symmetric higher-energy mode. This
result is also observed in the finite-difference time-domain
(FDTD) simulations. The energy difference is due to the dif-
ferent strength of the electric field in the dielectric material
of the coupler which polarizes it to a different degree.

The complex poles of the transmittivity in Eq. (1) are
simply the complex eigenmodes of the coupled resonator
system
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Fig. 2. The effective phase difference between the intra-cavity fields vs. the
single-pass phase shift.
where /± and c± are associated real-valued frequencies and
linewidths. The eigenmodes are completely degenerate, i.e.,
the frequencies and linewidths of the split modes are iden-
tical (/+ = /� and c+ = c�), at the exceptional point

rðepÞ
1 ¼ 2 r2a1a2ð Þ1=2

a1 þ r2a2

. ð12Þ

The linewidths are degenerate (c+ = c�) for r1 < rðepÞ
1 (over-

exceptional couplings), whereas the frequencies are degen-
erate (/+ = /�) for r1 > rðepÞ

1 (sub-exceptional couplings).
A complete degeneracy in both frequency and linewidth
is obtained only at the point r1 ¼ rðepÞ

1 . Note that the excep-
tional point depends on the magnitude of the coupling in
comparison with the differential loss. When a1 = r2a2 there
is no differential loss, and rðepÞ

1 ¼ 1, i.e., the frequency splits
(over-exceptional) for any value of the coupling. In addi-
tion, the eigenmodes can be characterized according to
their distinguishability. The modes are referred to as distin-
guishable when the frequency splitting is larger than the
average linewidth, i.e., when /+ � /� > (c+ + c�)/2. This
occurs when r1 < rðdistÞ

1 , where

rðdistÞ
1 ¼ rðepÞ

1 cos
1

2
ln

1

r2a1a2

� �
ð13Þ

is the distinguishable point. Note that in the limit of small
resonator losses, i.e., for r2a1a2 � 1, we obtain rðdistÞ

1 ¼ rðepÞ
1 ,

i.e., one can distinguish degenerate eigenmodes only at the
point where the linewidth goes to zero, the transmission
becomes infinite, and zero splitting is just resolvable, i.e.,
at the lasing threshold.

It turns out that the coupling required to distinguish the
eigenmodes r1 < rðdistÞ

1 is identical to that required for the
observation of under-damped Rabi oscillations. For smal-
ler couplings the oscillations are overdamped. The simplest
way to understand this is to invoke the coupled mode
approximation. For input pulses long compared to the
structural response time, the comb part of the impulse
response is washed out. Moreover, for sufficiently large res-
onator quality factors (the limit of small losses), and weak
coupling between the resonators, coupled mode equations
provide a good approximation for the structural response.
Because the coupled mode equations are formally identical
to the Schrödinger equation in the rotating-wave approxi-
mation (RWA), under these conditions the response is
characterized to a good approximation by that of the
well-known damped Rabi problem [25,26]. But, in this case
nutation involves the exchange of photons between resona-
tors, rather than population between atomic energy levels.
In the presence of differential loss, i.e., when a1 5 r2a2, the
Hamiltonian is non-Hermitian and there is energy exhange
between the split modes (dressed states), since they are no
longer the true eigenmodes (which are now complex) of
the system. Rabi oscillations are observed when the cou-
pling is large enough in comparison with the differential
loss that frequency splitting occurs in the intracavity field
of both resonators. Essentially, in this case the observed
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split modes (dressed states) sufficiently approximate the
eigenmodes of the system, such that very little energy is
exchanged between them, and they remain distinguishable.
For smaller couplings the intracavity frequency splitting
occurs only in the second resonator. In this case the split
modes (dressed states) are indistinguishable and exchange
significant energy with each other, since they no longer ade-
quately approximate the eigenmodes of the system. Hence,
in this case, Rabi oscillations do not occur between the res-
onators (bare states) because they are over-damped by the
differential loss. These observations are particularly rele-
vant in laser gyroscopy. Rabi oscillations have been
observed to occur in laser gyroscopy experiments as the
result of intra-cavity rather than inter-cavity coupling
[16,20,21]. The presence of underdamped Rabi oscillations
indicates that the observed beat-note is strongly deter-
mined by the coupling, rather than by the rotation itself.
Distinguishability of modes (standing waves in the case
of a gyro) is thus closely related to the sensitivity of a laser
gyro [27]. In the experiments described below the coupling
Fig. 3. Temporal response of coupled resonators: (a) internal intensity ma
monochromatic input at / = 0.
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the impulse response function, or using the approxima-
tion of the coupled mode equations. The results of this
analysis are shown in Fig. 3a, where the internal intensity
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FDTD simulation in Fig. 3b. Note that at / = /sp the
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state, however, more photons occupy the upper ring,
i.e., the photons appear to be trapped or to tunnel into
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trapping in three-level systems, and/or quantum mechan-
ical tunneling phenomena.
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Fig. 5. Mode splitting in the transmission spectrum of two coupled fiber
ring resonators. The couplings are r1 = 1.0, 0.999, 0.995, 0.99 (indistin-
guishable), and r1 = 0.96, 0.1 (distinguishable) from top to bottom. The
fixed parameters are: a1 = 0.98, a2 = 0.82, and r2 = 0.95.
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The experimental setup of interest is shown in Fig. 4. A
tunable external-cavity diode laser operating at 1550 nm
was used to probe the transmission of a system consisting
of two coupled fiber rings, L1 = 1.22 m and L2 = 0.97 m
in circumference. The laser output was isolated and end-
fire coupled into a straight section of a single-mode fiber
which was weakly coupled to one of the rings by means
of a 90/10 coupler. A polarization controller was used to
select TE polarization. The two rings were inter-coupled
by a tunable coupler and submerged into a water bath
for thermal stabilization.
Fig. 6. A close-up view of CRIT, from Fig. 5. The solid line is a curve fit to
shown for the symmetric and anti-symmetric modes after steady-state is achie
The output was detected with an InGaAs PIN photodi-
ode, and recorded on a digital storage oscilloscope as the
laser was scanned over a frequency range spanning several
resonances (typically 1 GHz) at a scan rate of several hun-
dred hertz. Whispering-gallery modes were initially
observed in the second ring (the innermost ring, closest to
the excitation guide), with the first ring being de-coupled
from the system. Then, changes in the resonances were
observed as the coupling between the rings was increased
as shown in Fig. 5, which shows the transmission of the sys-
tem as a function of laser detuning for a variety of cou-
plings. In the trace of Fig. 5d, resonances associated with
both the innermost (deep, broad dips) and the outermost
(shallow, narrow dips) rings can be observed. Because the
circumferences of the rings are different, the two types of
resonances do not overlap on every free spectral range.
However, when they do, a sharp spike in transmission
emerges and splits the resonance. A blow up of this effect
is shown in Fig. 6.

Note that the transition from the limit of weak coupling
to that of strong coupling is accompanied by a halving in
free spectral range (FSR), i.e., the FSR changes from about
200 MHz to 100 MHz. This occurs because, in the limit of
strong coupling, the spectrum simply becomes identical to
that of a ring with twice the optical path length of the indi-
vidual rings. The couplings r1 were determined by fits of
Eq. (1) to the experimental data using the fixed parameters:
a1 = 0.98, a2 = 0.82, r2 = 0.95. The distinguishable point

was determined from these parameters to be rðdistÞ
1 ¼

0:993. The splittings of the top three curves in Fig. 5 are
thus characterized as indistinguishable according to Eq.
(13). This is obvious from the spectra, since for these curves
the induced transparency feature never exceeds 50% of the
total peak-to-valley transmission.

In summary, we experimentally demonstrated CRIT in a
two coupled fiber-ring resonators. The modes can be char-
acterized according to their degeneracy and distinguishabil-
ity. Distinguishable and indistinguishable splittings were
observed. Rabi oscillations are predicted for distinguish-
able splittings from FDTD simulations and a transient
Eq. (1) where a1, a2, and r1 are fitting parameters. FDTD simulations are
ved.
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analysis. Narrow, sub-linewidth spectral features associ-
ated with the splitting were observed. The linewidth of
the transmission peaks is determined by the coupling
between the two resonators and thus could be made very
small, potentially narrower than the finesse-limited reso-
nance linewidth of the constituent resonators.
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